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Supplementary Material 
 
Table S1 – Frequently asked questions. The variety of considerations relevant to the topic of mean 
task-evoked responses potentially inflating task-state FC estimates are substantial. We therefore include 
this question-driven organization of relevant considerations to provide a more direct means for frequent 
questions to be addressed. 

Questions Answers 
1) Why remove 
mean evoked 
responses prior to 
task-state FC 
analysis? 

So that the amount of inter-node linear interaction can be estimated, above and 
beyond mere task co-activations. Rather than the ambiguous inference that two 
regions are "likely active or interacting during the task", removing mean evoked 
responses allows for the more specific inference, "likely interacting during task". 
Given that most neuroscience studies have focused on mean evoked responses, 
it is important to remove these responses to reduce the risk of reporting mean 
evoked responses (mere first-order changes in activity level) as "connectivity" 
results (second-order effects). 

2) What other 
reasons are there 
for removing the 
mean evoked 
responses prior to 
task-state FC 
analysis? 

Task-state FC can be conceptualized as an interaction between psychological 
and physiological factors – a "psychophysiological interaction" (PPI) (Friston et 
al., 1997; McLaren et al., 2012). As with most interactions, it is important to 
account for the main effects prior to interpreting the interaction. This ensures the 
estimated interaction is not just the main effect (here, mean evoked response) 
masquerading as an interaction. Additionally, task-state FC can be 
conceptualized in terms of causal inference, in which the main effect of task 
events is a confound for estimating the interaction between pairs of nodes. This is 
clearly demonstrated in the "no connectivity zone" example in Figure 3, wherein 
the main effect produces correlations in nodes with no physical means of 
interacting. 

3) How can the 
task-timing 
confounding be 
corrected? 

As with all confounds, holding the confounding factor constant can remove its 
effect (Pearl, 2009). The most straightforward strategy for holding stimulus/task 
state constant is to only include time points from that state – accounting for the 
main effect of task state. Critically, however, neural processing involves temporal 
autocorrelation, such that the effects of rest-to-task (or task-to-task) state 
changes extend beyond stimulus presentation (state-transition transients). Both 
models reported here indicate that the temporal autocorrelation introduced by the 
fMRI BOLD response is especially problematic in this respect (see Figure 2). 
Another strategy is therefore necessary, and we advocate subtraction of an 
estimate of the temporally-extended response to the stimulus. We also show that 
flexible fitting of the task-evoked response is critical for properly removing the 
task-timing confound for fMRI analyses. 

4) Does removing 
the mean evoked 
response remove 
too little variance 
(leaving false 
positives)? 

This is unlikely, given that all false positives were removed in the minimal and 
neural mass models following subtraction of mean evoked responses. This result 
appears to rely on several prerequisites: 1) stimulus identity and timing are 
identical across event instances, 2) enough time points are included in the mean 
evoked response estimate to cover the temporally-extended response to the 
stimuli, 3) more than one event instance is included in the mean evoked response 
estimate (to allow separation of each evoked response from the mean response), 
4) an accurate estimate of the evoked response shape is used (e.g., using FIR 
regression), and 5) enough temporal separation between events of different 
conditions to ensure separate mean evoked response estimates and correlation 
estimates. Temporal jitter between stimuli can be useful for mean evoked 
response estimation (especially when linear regression is used) (Miezin et al., 
2000), but this is not helpful for correlation estimation. Block designs (with or 
without temporal jitter) may be most appropriate, given that this allows removal of 
both transient and sustained evoked responses (Al-Aidroos et al., 2012; Visscher 
et al., 2003) with enough temporal separation between condition types. 
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5) Does removing 
the mean evoked 
response remove 
too much variance 
(inducing false 
negatives)? 

This is unlikely, given that the neural mass computational model indicated a 
reduction in false negatives following removal of the mean evoked responses. Yet 
it is technically possible that two nodes could have a highly stereotyped 
interaction time-locked to the stimuli, producing covariance that is included in the 
mean evoked response. In this case, removing the mean evoked response from 
both nodes would inappropriately reduce the detected covariance. However, 
since neural populations are known to always have variability across event 
instances, moment-to-moment and event-to-event covariance would remain, such 
that the proper level of covariance would likely be detected. Put another way, for 
a signal to be removed by subtracting the mean evoked response that signal 
would need to be time-locked to the task and 100% consistent in amplitude with 
the mean evoked response across events. This appears unlikely given the 
inherent variability of neural responses. Supporting this conclusion, we found that 
~90% of inter-region covariance remained in fMRI data after removing the mean 
evoked response from all nodes (see Supplementary Materials section, pg. 8). In 
other words, if two nodes are truly interacting, evidence for such interaction is 
very likely to be present in the moment-to-moment and event-to-event variance 
left over after removal of the mean evoked responses. 

6) Do other 
sources of 
confounding 
remain after 
removal of mean 
evoked 
responses? 

Yes. Any time a node influences two or more other nodes there is likely an 
inflation of the correlation between those downstream nodes. While this is 
problematic, we focus here on the confounding influence of external stimuli. It will 
be essential for future research to resolve the more general issue of confounding 
in FC analysis. Some progress toward removing such confounds have been 
made, typically via partial correlation or multiple regression (Cole et al., 2016a; 
Ramsey et al., 2010; Smith, 2012). Note that partial correlation and multiple 
regression FC approaches are likely only minimally impacted by the task-timing 
confound, due to partialling out of common signals across time series (mean 
evoked responses). 

7) Is it problematic 
that removing the 
mean evoked 
response leaves 
some evoked 
variance? 

No. Subtracting the mean evoked response removes the first-order (main) effect 
of the task stimuli, leaving second-order event-to-event variability in the evoked 
response that can be used to assess state-dependent changes in the statistical 
relationship between nodes (i.e., task-state FC). Testing for correlations using 
such event-to-event variability is very similar to the "beta series" task-state FC 
approach, which estimates correlations between event-to-event variation in 
estimated evoked responses (Rissman et al., 2004).   

 
 
 
Details of task-state vs. resting-state FC empirical comparisons 
 

The effects reported in Figure 5B were relatively consistent across the seven 
tasks performed by each participant, despite differences in timing, duration, and 
cognitive processes across the tasks. The percentage of connections with task-state FC 
increases from resting-state FC (false discovery rate corrected for multiple 
comparisons, p<0.05) for each of the seven tasks without task-regression preprocessing 
was: 2.0% (emotion task), 4.3% (gambling task), 8.9% (language task), 4.6% (motor 
task), 7.9% (reasoning task), 14.7% (social task), and 7.7% (working memory task). In 
contrast, for the FIR approach the rate of task-state FC increases were: 0.8% (emotion 
task), 2.2% (gambling task), 3.0% (language task), 1.9% (motor task), 3.5% (reasoning 
task), 2.1% (social task), and 3.1% (working memory task). Thus, there were fewer 
task-state FC increases for every task when using the FIR approach, demonstrating 
consistency in this result. 
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There were also effects of the FIR approach on task-state FC decreases from 
resting-state FC. Consistent with task-state FC being inflated positively without 
correction, the FIR approach identified a somewhat larger (but overall similar) number of 
task-state FC decreases from resting-state FC. This was apparent from the shift from 
20.03% of FC decreases without task-regression preprocessing to 21.45% with FIR 
task-regression preprocessing. Similar results were found when using the constrained 
basis set approach, though with even more task-state FC decreases (27.39% on 
average). Focusing on the FIR approach (given its greater flexibility for fitting HRF 
shape), these results suggest that task timing regression results in a similar number of 
task-state FC decreases from resting-state FC compared to when no task regression is 
used. 
 
 
Validating the FC inflation estimates using inter-subject correlations as a proxy 
for false positives 
 
 Al-Aidroos et al. (2012) performed an analysis involving inter-subject correlations 
to estimate the effectiveness of FIR task regression in reducing possible false positives 
in task-state FC analysis. We performed a similar analysis here. The reasoning behind 
this analysis is that there cannot be neural interaction between the brains of separate 
subjects, such that any time series correlations across subjects is unlikely to be driven 
by true neural interactions. Instead, such inter-subject correlations would likely be driven 
primarily by the task timing that all participants are subjected to. This intuition is 
compatible with the notion (see Figure 1) that cross-even mean evoked responses can 
lead to task-state FC false positives by task timing acting as a confounding "third" 
variable. We repeated the Al-Aidroos et al. (2012) analysis with the HCP N-back task 
data, observing inter-subject correlations for each of the four primary preprocessing 
strategies tested here (Figure S1). Note that we restricted the time series going into the 
inter-subject correlations to within-block time points (as with the other analyses), already 
reducing the effect of task timing on the resulting correlations. 
 Without task regression there a variety of high inter-subject correlations, primarily 
in the visual, dorsal attention, and frontoparietal networks. These correlations had a 
maximum of r=0.50. HRF regression reduced the maximum to r=0.28, basis set 
regression to r=0.20, and FIR regression to r=0.14. To the extent that inter-subject 
correlations reflect task-state FC false positives, these results further confirm the 
conclusion that FIR regression was the most effective of the tested approaches for 
reducing false positives. However, the non-zero correlations remaining for FIR 
regression suggests that some subtle effects of evoked responses remains even after 
removal of event-averaged evoked responses. One prominent possibility is that 
sequential effects – such as due to practice with the N-back task across blocks – 
systematically alters the evoked response amplitudes over time. This is consistent with 
studies showing consistent reductions of evoked activations with practice in a variety of 
brain regions (Chein and Schneider, 2005). The consistency of these practice effects 
across subjects could, in theory, drive inter-subject correlations. It would be important 
for future research to assess this possibility by investigating practice effects. Further, it 
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could be informative for future studies to also remove event-to-event variance, as was 
performed by Al-Aidroos et al. (2012) in another supplementary analysis. 
 

 
 
Figure S1 – Inter-subject correlation reduction as a function of preprocessing strategy. Results of 
inter-subject correlation of N-back task time series are shown for: No regression, canonical HRF 
regression, basis set regression (5 regressors), and FIR regression. The color bar next to the no 
regression results reflect the network assignments for each of the 360 regions shown in Figure 5B. As 
with the FC analyses, the time series were isolated to within-block time points (i.e., the inter-block rest 
periods were removed). 
 
 
Method: Non-parametric shuffling procedure to correct for task-timing-driven FC 
false positives 
 We utilized a non-parametric shuffling procedure as an alternative approach to 
correct for task-timing-driven FC false positives (Averbeck et al., 2006; Grün, 2009) 
(Figure S2). This involved identifying time points for each block of the working memory 
HCP task, then swapping the two blocks for each of the eight task conditions (0-back 
and 2-back for separate blocks of face, place, tool, and body part stimuli). This 
swapping was done for all regions' time series except for the "seed" region when 
constructing the shuffled FC matrix, ensuring a pairwise mismatch between block 
identities when computing the pairwise correlations. The resulting false positive FC 
estimates were then converted to Fisher's z-transformed correlation values prior to 
averaging across subjects (then converted back to r-values for reporting).  
 
 
Validating the FC inflation estimates using a non-parametric event-shuffling 
procedure 
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 Several methods have been developed to remove evoked activity in the context 
of spike train correlations from invasive neural recordings (Brody, 1999; Grün, 2009). 
We reasoned that these non-parametric methods could be applied to fMRI data to 
further validate our false positive estimates, which are based on a parametric FIR GLM. 
The non-parametric methods, which involve fewer assumptions than parametric GLM 
approaches, involve shuffling events for each neural time series relative to each other 
(Grün, 2009) (Figure S2A). This breaks the moment-to-moment (and event-to-event) 
relationship between the time series while keeping the time-averaged evoked 
relationship. The time-averaged evoked relationship is maintained because the shuffling 
is between activity events that share the same task timing (e.g., trials with the same 
onset times between shuffled blocks). For simplicity, we shuffled the events by shifting 
each region's time series in time by one block (of the same condition) relative to each 
other region. Any remaining correlations between the regions' time series could not be 
driven by moment-to-moment (or event-to-event) covariance, but rather from task-
timing-locked evoked activity that is common across task blocks. We consider such 
task-timing-driven correlations to be false positives (based on the computational model 
results). 
 We applied this shuffling procedure to the empirical fMRI data. We focused on 
the working memory task because the block durations were more uniform than most of 
the other tasks in the dataset (facilitating block exchangeability during shuffling), and 
because the working memory task included the most data per subject. See Methods for 
details regarding this analysis. We found that the overall pattern of false positive 
estimates was quite similar (r=0.83, p<0.00001) between the shuffle-based and FIR-
based false positive estimates (Figure S2B). The percentage of significant false 
positives (based on t-tests comparing uncorrected vs. corrected FC, p<0.05 FDR) was 
also very similar to the FIR results: 38% (37% with FIR). Further, the false-positive-
corrected task-state FC matrices were highly similar across both methods (r=0.97, 
p<0.00001). This convergence with a highly distinct approach provides additional 
validation of the FIR-based false positive reduction approach. 
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Figure S2 – A non-parametric shuffling procedure to estimate task-state FC false positives. A) The 
procedure used to estimate task-state FC false positives (and correct for those false positives) is 
illustrated. This approach is often used to correct for task-timing-induced false positives with spike 
correlations in multi-unit neural recordings (Brody, 1999; Grün, 2009). There was no inter-region 
correlation due to the moment-to-moment variance in condition A, but there was a strong correlation in 
condition B. The amount of FC inflation is estimated by shuffling blocks/events of the same condition in 
the second region, breaking the moment-to-moment relationship (which is of primary interest) but leaving 
the time-averaged evoked relationship. Thus, the post-shuffle correlation can be used to correct for task-
timing-induced FC inflation. The Fisher's z-transform (Fz) was used to subtract the r-values without the 
bias introduced by the restricted range of r-values. B) The shuffling procedure was applied to the 
empirical fMRI data, indicating a similar pattern of false positives as the FIR regression approach. Results 
for the working memory task are shown. 
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Testing an alternative FC estimation method: PPI 
 
 We next tested whether an alternate FC estimation method is similarly affected 
by fMRI-induced inflation. As we have shown previously, covariance is the common 
statistical measure underlying a variety of FC measures (Cole et al., 2016b): Pearson 
correlation, Spearman rank correlation, multiple regression, and PPI are all forms of 
normalizing/modifying simple covariance. Specifically, Pearson correlation normalizes 
covariance by dividing by (a transform on) the standard deviations of the time series, 
while Spearman rank correlation is equivalent to calculating Pearson correlation on the 
rank orders of the time series values. PPI is the simple pairwise regression between 
time series along with some nuisance regressors (Cole et al., 2013). Notably, simple 
pairwise regression (as used by PPI) is equivalent to the covariance divided by the 
variance of the source (in a source-target pair) time series. 
 Given that covariance underlies two common task-state FC methods used with 
fMRI – Pearson correlation and PPI – we expected that PPI would be similarly affected 
by task co-activations as compared to what we found with Pearson correlations. We 
tested this by calculating PPI using either no task regression, canonical-HRF regression 
(as used with standard PPI), or FIR regression. PPI involves a task-regression step that 
assumes the canonical HRF, such that comparison to the canonical-HRF condition will 
be the most relevant to existing PPI approaches. Note that we used a version of 
generalized PPI (McLaren et al., 2012), wherein the "psychological" variables are block-
level boxcar regressors (Cole et al., 2013). This aids with interpretation (and 
comparison to the Pearson correlation results), since the interaction term in the PPI 
calculation is not influenced by the chosen HRF shape. Also note that, unlike the 
original PPI approach (Friston et al., 1997), generalized PPI is calculated for each task 
condition separately (rather than using condition contrasts only) with contrasts 
calculated as subtraction of PPI estimates (McLaren et al., 2012). Another difference 
from typical PPI approaches was that the task activation regression occurred prior to 
(rather than simultaneous with) FC estimation. We did this primarily to make the PPI 
approach (slightly) more conservative, with as much variance as could be accounted for 
by the task regressors being taken out prior to PPI estimation. Thus, if anything, the 
approach used here should reduce the chance of false positives relative to typical PPI 
approaches. 
 We began by comparing no-regression to FIR-regression with PPI (i.e., with 
regression rather than Pearson correlation). As with Pearson correlation, we found that 
all seven tasks involved statistically significant (p<0.05, FDR corrected) changes in FC 
estimates. The percentage of connections with significant (p<0.05, FDR corrected) 
differences for each task were, respectively (increases/decreases): 8.6/6.3, 28.6/7.8, 
25.0/22.9, 24.7/4.1, 35.0/12.1, 43.1/15.3, 23.4/8.2. These results demonstrate that task-
timing regression matters for PPI analyses, as it significantly alters PPI estimates 
across a broad variety of brain regions across a broad variety of task manipulations. 
 We next tested the extent to which PPI results – which exclusively assume the 
standard HRF shape – likely include task-evoked activation-based FC inflation. This 
was quantified by comparing PPI calculated using canonical-HRF task regression 
versus PPI calculated using FIR task regression. Consistent with the Pearson 
correlation results, canonical-HRF regression resulted in significantly distinct PPI 
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estimates relative to when FIR regression was used. The percentage of connections 
with significant (p<0.05, FDR corrected) differences for each task are reported in Table 
S2. Notably, the percentage of changed connections tended to be smaller here than the 
no-regression vs. FIR regression case. This suggests that the canonical-HRF 
regression typically used with PPI likely helps reduce activation-induced FC inflation. 
However, given that a large number of significant differences remained when comparing 
canonical-HRF with FIR regression, the typical PPI approach appears to not be as 
effective as FIR regression.  
 
Table S2 – Amount of likely activation-induced PPI inflation. Comparison of canonical-HRF vs. FIR 
regression approaches with PPI estimates, listed for each of the empirical fMRI tasks. 
Task name % connections increased 

with canonical-HRF PPI 
% connections decreased 
with canonical-HRF PPI 

Emotion 3.3% 4.1% 
Gambling 25.7% 1.3% 
Language 30.8% 9.9% 
Motor 6.4% 0.4% 
Social 29.8% 0.8% 
Reasoning 36.8% 10.6% 
Working memory 23.2% 1.1% 

 
 
Empirical fMRI data: When mean task-evoked variance is not removed, task-state 
FC is not primarily driven by mean task-evoked variance 
 
 A common concern with the task timing regression approach is that it might 
remove the very cause of task-state FC that is of interest. The neural mass model 
already suggested that this is not the case, since removing cross-event mean activity 
did not induce false negatives (Figure 4F). Nonetheless, there might be some concern 
that the task timing regression approach removes the primary source of task-state FC 
effects in empirical fMRI data. We tested this possibility by comparing the amount of 
task-state-FC-driving variance removed by task timing regression. We expected that 
most of the task-state-FC-driving variance would remain after this preprocessing step, 
consistent with the primary driver of task-state FC being moment-to-moment (rather 
than cross-event mean) fluctuations. Critically, however, removing this cross-mean 
variance would still be important, since the relatively small amount of cross-event mean 
variance was shown in previous sections to cause (false positive) statistically significant 
effects. 
 We tested this hypothesis by quantifying the change in between-region shared 
variance before versus after FIR task regression. We found that 89.39% of the shared 
variance across all pairwise connections (across all 7 tasks) was preserved after FIR 
regression. This was computed after converting the r-values representing task-state FC 
to r-squared values (i.e., percent shared linear variance), then averaging across 
subjects, tasks, and connections. This revealed that mean shared variance during task 
went from r2=0.066 without task regression to r2=0.059 with FIR task regression on 
average. This small change indicated that 89.39% of the shared linear variance was 
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preserved after FIR regression on average. A similar result was obtained when 
restricting to only connections that were statistically significant (p<0.05, FDR corrected) 
relative to 0 prior to task regression: 89.53% of the shared linear variance was 
preserved after FIR regression on average. This result confirms our hypothesis that, 
while critical for reducing the chance of a false positive for any single result, the FIR 
regression step removed only a small amount (less than 11%) of the variance driving 
task-state FC effects. This, in turn, demonstrates that task-state FC estimates (even 
when not performing task regression) are primarily driven by moment-to-moment (and 
event-to-event) variance rather than the cross-event mean variance removed by FIR 
regression. 
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